Dr. Marques Sophie Office 519 Algebra II

Spring Semester 2014 marques@cims.nyu.edu

Problem Set # 8

Exercise 1: Section 4.2 [F] 3., 9., 10. . Exercise 2: We say that a matrix $A \in M_n(K)$ is singular, if $Ker(L_A) \neq \{0\}$.

- 1. Prove that if $A, B \in M_n(K)$ and either matrix is singular. Then AB is singular.
- 2. Prove that if A and B are both non-singular, so is AB.

Exercise 3:

Let $T: V \to W$ be a linear operator between finite dimensional vector spaces and let $\mathcal{X} = \{e_1, ..., e_n\}, \mathcal{N} = \{f_1, ..., f_m\}$ be bases in V, W. We have defined rank(T) = dim(R(T)). If $A = [T]_{\mathcal{N},\mathcal{X}}$. Prove the identity rank(T) = rank of the linear operator $L_A: K^n \to K^m$.

Exercise 4:

Prove that the following statement are equivalent:

- 1. $det(A) \neq 0;$
- 2. A has multiplicative inverse A^{-1} such that $A^{-1}A = AA^{-1} = Id$.
- 3. $L_A: K^n \to K^n$ is an invertible linear mapping (one-to-one and onto).

Hint: You can prove $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$.

Exercise 5:

If A is an $n \times n$ matrix, the following conditions are equivalent:

- 1. $det(A) \neq 0$ (i.e. A is a nonsingular matrix and L_A is invertible);
- 2. the rows R_1, \ldots, R_n are linearly independent in K^n ;
- 3. the columns C_1, \ldots, C_n are linearly independent in K^n .